
PROGRAMMING IN JAVA

By ,

Hamsashree M K

Asst.Professor

Dept.ECE BGSIT,B G

Nagara

OVERVIEW OF JAVA

 Java is a programming language developed by
JAMES GOSLING at SUN MICROSYSTEMS and
released in 1995.

 The java source code is converting into virtual
code called as byte code.

WHAT IS JAVA

 Java is a class based,object –oriented
programming language.

 Java applications are typically compiled to byte code
that can run on any Java Virtual Machine(JVM)

WHY WE USE JAVA?

 Java can be used to create complete application.

 Java technology is an object oriented /platform
independent , multithreaded programming
environment .

 Java is used to create 2 types of programs

Applets

Application

APPLICATIONS OF JAVA

o Desktop GUI Applications

o Mobile Applications

o Enterprise Applications

o Scientific Applications

o Web based and Embedded Applications

JAVA FEATURES/BUZZ WORDS:

Simple:

➢ Java is free from pointer

➢ Rich set of API

➢ Garbage Collector

Object Oriented:

➢ Java is easily exteded since it is based on the
object model.

Robust:

➢ Java is a strictly typed language, it checks user
code at compile time and run time.

Portability:

➢ If any language supports platform independent and
architectural neutral feature known as portable.

Security:

➢ Java is more secured language compare to other
language.

Multithread:

➢ When any Language execute multiple thread at a time
that language is known as multithreaded Language

Architectural Neutral:

➢ The goal of java designers to develop “write once, run
anywhere, anytime, forever” so that a program can be
independent of the architecture of the system in which
it is running.

High Performance:

➢ Java uses Bytecode

➢ Garbage collector

➢ No pointer

➢ Supports Multithreading

Distributed:

➢ We can create distributed applications in java. RMI
and EJB are used for creating distributed
applications.

Dynamic:

➢ Java programming support Dynamic memory
allocation due to this memory wastage is reduce and
improve performance of application.

➢ New operator is used to allocate the memory
dynamically.

JAVA BYTECODE

 The java source code is converting into virtual code
called as byte code.

 A bytecode is a set of highly optimized setof
instructions which can be executed by JVM.

 The use of bytecode enable JVM to execute
programs much faster.

JAVA ENVIRONMENT VARIABLE/JAVA
RUNTIME ENVIRONMENT(JRE):

Java environment is a collection of tools and
classes, methods.

1) Java Development kit (JDK).

2)Application programming interface (API)/Java
Standard library(JSL)

JAVA DEVELOPMENT KIT – (JDK)

The jdk consists of a collection of tools as

 appletviewer (to launch applets)

 javac (java compiler)

 java (java interpreter)

 javap (java disassembler)

 javah (for C header files)

 javadoc (for HTML documents)

 jdb (java debugger)

PROCESS OF BUILDING AND RUNNING JAVA

APPLICATION

APPLICATION PROGRAMMING

INTERFACE(API):

API is a collection of classes and methods are
grouped into several different packages.

➢ import java.lang.*;

➢ import java.lang.*;

➢ import java.io.*;

➢ import java.net.*;

➢ import.java.awt.*;

➢ import java.applets.*;

JAVA IS INTERPRETED LANGUAGE

JAVA VIRTUAL MACHINE

THE INTERNAL ARCHITECTURE OF THE JAVA

VIRTUAL MACHINE.

OOP’S FEATURES

 Abstraction:

It is the property of hiding the information and
presenting only the necessary.

Encapsulation:

➢ It is a mechanism that binds together code and the data
it manipulates, and keeps both safe from outside
interference and misuse.

 Inheritance

It is the process by which one object acquires
the properties of another object.

Polymorphism

The concept of polymorphism is “one interface,
multiple methods”, i.e. , it is possible to design a
generic interface to a group of related activities.

GENERAL STRUCTURE OF JAVA

Document Section:

It is use create comment for each section

Package Statement:

 A package is a group of classes that are defined by a
name.

 If you want to declare many classes within one element
then you can declare it within a package.

package package_name;

 Import Statement:

It is used to importing the class of another
package.

Interface Statement:

It can be used when programmers want to
implement multiple inheritances within a program

A SIMPLE JAVA PROGRAM

/*

This is a simple Java Program call

this file “Example.java”

*/

Class Example{

//Your program begins with a call to main()

Public static void main(String args[])

{

System.out.println(“First java program”);

}

}

 Java code is case sensitive

 You must have to define the class first.

 The name of the class in java is the name of the java
program.

Public class Hello This creates a class called
Hello

Comments It can be used anywhere in the
program.

Braces Two curly brackets are used to
group all the commnads

Public static void main Public it means that it can also be
used by code outside of its class.

Static used when we want to
access a method without
creating its object

Void indicates that a method
does not return a value.

Main is a method this is a
starting point of a java program

String[] args You can pass the input
parameter and main()
method takes it as input

System.out.println(); This statement is used to print
text on the screen as output.

DATA TYPES

CONTROL STATEMENTS

 If statement

 If else

 Else if

 switch

ITERATION STATEMENTS

 While

 Do while

 For

 Foreach

THERE ARE VARIOUS TOKENS USED IN

JAVA

 Reserved keywords

 Identifiers

 Literals

 Operators

 Seperators

INTRODUCING CLASSES

 Class fundamentals

 Declaring objects

 Constructors

 This key word

 Garbage collection

 Overloading methods

 Access control

 Final key word

 Nested and inner classes.

CONSTRUCTORS

A constructor is a method with the same name as
that of the class, which is invoked automatically
during the creation of an object.

Types of java constructors

There are two types of constructors:

 Default constructor (no-arg constructor)

 Parameterized constructor.

WHAT IS CLASS?

 A class is a template or blueprint that is used to create
objects.

 Class representation of objects and the sets of
operations that can be applied to such objects.

 A class consists of data members and methods.

Syntax:

Public class class_name

{

type instance-variable1;

type instance-variable2;

type instance-variableN;

}

type methodname1(parameter-list){

//body of method

}

type methodnameN(parameter-list){

//body of method

}

EXAMPLE

class Box

{

double width;

double height;

double depth;

}

//This class declares an object of type Box

Class BoxDemo{

public static void main(String args[]){ Box

mybox=new Box();

double vol;

//assign values to mybox’s instance variables

mybox.width=10;

mybox.height=20;

mybox.depth=15;

//compute volume of box

Vol=mybox.width*mybox.height*mybox.width;

System.out.println(“Volume is” + vol);

}

}

OBJECT

➢ In real-world an entity that has state ad its
behaviour is known as an object.

➢ A pen is an object.

➢ Its name is parker,color is silver etc.known as its state.

➢ It is used to write,so writing is its behaviour.

Pen mypen; //declare reference to object

mypen=new Pen()://allocate a Pen object

CONSTRUCTORS

A constructor is a method with the same name as
that of the class, which is invoked automatically
during the creation of an object.

Types of java constructors

There are two types of constructors:

 Default constructor (no-arg constructor)

 Parameterized constructor.

Default Constructor Syntax

class className

{

className ()

{

Block of statements; // Initialization

}

.....

}

EXAMPLE PROGRAM FOR DEFAULT

CONSTRUCTOR

class A
{
A()

{
int a=10,b=20;
System.out.println("I am from default Constructor...");
System.out.println("Value of a: "+a);
System.out.println("Value of b: "+b);}
public static void main(String ar[])
{

A a1=new A();
}
}

PARAMETERIZED CONSTRUCTORSYNTAX

class ClassName

{

.......

ClassName(list of parameters) //parameterized
constructor{

.......

}

.......

}

class A
{int a=10,b=20;

A(int a,int b)
{

// variable as a parameter

System.out.println("Parameter as variable to Constructor...");

System.out.println("Value of a: "+a); System.out.println("Value of b:

"+b);

}

A(A a1) // object as parameter to constructor
{
System.out.println("Parameter as object to Constructor...");

System.out.println("Value of a: "+a1.a); System.out.println("Value

of b: "+a1.b);

}

public static void main(String ar[])
{A a1=new A(2,3);
A a2=new A(a1);

}
}

RULES OR PROPERTIES OF A CONSTRUCTOR

 Constructor will be called automatically when the
object is created.

 Constructor name must be similar to name of the class.

 Constructor should not return any value even void
also.

➢ Constructor definitions should not be static.

➢ Constructor should not be private provided an
object of one class is created in another class

➢ Constructors will not be inherited from one class
to another class

THIS KEYWORD

 this can be used inside any method to refer to the
current object

 this is always a reference to the object on which the
method was invoked

 this can be passed as an argument in the method call.

 this() can be used to invoke current class
constructor.

 this keyword can be used to invoke current class
method (implicitly)

 this can be passed as argument in the constructor
call.

 this keyword can also be used to return the
current class instance.

Box(double w,double h,double d)

{

this.width=w;

this.height=h;

this.depth=d;

}

INSTANCE VARIABLE

 Instance variables are used to overlap the names of the
local variable.

Box(double width,double height,double depth)

{

this.width=width;

this.height=height;

this.depth=depth;

}

GARBAGE COLLECTION

 New keyword

 Delete Keyword

Java takes different approach to de-allocate the
memory is called garbage collection

FINAL KEYWORD

In java language final keyword can be used in
following way.

 Final at variable level

 Final at method level

 Final at class level

Final at variable level
 Final keyword is used to make a variable as a

constant. This is similar to const in other language.
 A variable declared with the final keyword cannot be

modified by the program after initialization.

Example:
class A
{

final int a=10;
public static void main(String ar[])

{
System.out.println(“static variable a=”+a1.a); //
no error

System.out.println(“static variable a=”+a1.a++);
//final variable cannot be modified (error)

}

}

 Final at method level

 It makes a method final, meaning that sub
classes cannot override this method.

 The compiler checks and gives an error if you try to
override the method.

 When we want to restrict overriding, then make a
method as a final.

Example:

class A

{

final void add()

{

System.out.println(“sum=”+(2+3));

}

}

class B extends A

{

void add() // error because final method cannot override

{

System.out.println(“sum=”+(2+3));

}

public static void main(String ar[])

{ A a1=new A();

a1.add();

}

}

Final at class level

It makes a class final, meaning that the class cannot be inheriting by other
classes. When we want to restrict inheritance then make class as a final.

Example:

final class A

{

void add()

{

System.out.println(“sum=”+(2+3));

}

}

class B extends A // error because final class cannot inherited.

{

public static void main(String ar[])

{
A a1=new A();

a1.add();

}

}

OVERLOADING METHODS

//Demonstrate method overloading

Class Overload Demo{

void test() {

System.out.println(“No parameters”);

}

//overload test for one integer parameter

Void test(int a) {

System.out.println(“a: “ +a);

}

CONSTRUCTOR OVERLOADING

class A

{

int a=10,b=20;

A(int a,int b)

{

System.out.println("Value of a: "+a);

System.out.println("Value of b: "+b);
}

A(int a,int b,int c)

{S

ystem.out.println("Value of a: "+a);

System.out.println("Value of b: "+b);

System.out.println("Value of b: "+c);

}

public static void main(String ar[])

{

A a1=new A(2,3)

;A a2=new A(2,3,4);}

}

ACCESS CONTROL

Which parts of a program can access the members of a
class.

Access specifies are

1.Public

2. Private

3. Protected

Class Test
{

int a;

public int b;
private int c;

//methods to access c

Void setc(int i)
{

c=i;

}
Int getc()
{

return c;
}
}

Class AccessTest{

Public static void main(String args[]){ Test

ob=new Test();

ob.a=10;

ob.b=20;

ob.c=100//Error

ob.setc(100);

System.out.println(“a,b and c:” ob+a +”
“+ob.b.+ “ “ +ob.getc());

}

}

NESTED AND INNER CLASS

 If one class is existing within another classis
known as inner class or nested class

 Inner class properties can be accessed in the
outer class with the object reference but not
directly.

 Outer class properties can be access directly
within the inner class.

 Inner class properties can't be accessed directly
or by creating directly object.

SYNTAX

Syntex:

Class A

{

Class B

{

}

}

class A

{

int a=10;

void add()

{

int a=10,b=20;

int c=a+b;

System.out.println(“sum=”+c);

}

class b

{

void display()

{

System.out.println(“outer class variablea=”+a); add();

}

public static void main(Stringar[])

{

A a1=new A();

a1.add();

}

}

Thank you

MODULE 2
By

Hamsashree M K

Asst.Professor

Dept.Of ECE

BGSIT,B G Nagara

INHERITANCE

 Inheritance Basics

 Using super

 Creating a multilevel Hierarchy

 When constructors are called

 Method overriding

 Dynamic method Dispatch

 Using Abstract class

 Using final with inheritance

 The object class

INHERITANCE

 The process of obtaining the data members and

methods from one class to another class is known

as inheritance.

 It is one of the fundamental features of object-

oriented programming.

SYNTAX OF JAVA INHERITANCE

class Subclass-name extends Superclass-name

{

//methods and fields

}

The extends keyword indicates that you are

making a new class that derives from an existing

class.

KEY POINTS

 In the inheritance the class which is give data

members and methods is known as base or super

or parent class.

 The class which is taking the data members and

methods is known as sub or derived or child

class.

 The data members and methods of a class are

known as features.

 The concept of inheritance is also known as re-

usability or extendable classes or sub classing or

derivation.

WHY WE USE INHERITANCE

 For Method Overriding

 For method overloading

 For code Re-usability

TYPES OF INHERITANCE

 Single inheritance

 Multiple inheritance(Interface)

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

SINGLE INHERITANCE

EXAMPLE

class A

{

void display()

{

System.out.println(“base class method”);

}

}

class B extends A

{

void display2()

{

System.out.println(“sub class methods”);

}

Public static void main(String ar[])

{

B a1=new B();

a1.display();

a1.display2();

}}

MULTILEVEL INHERITANCE

In Multilevel inheritances there exists single base class, single

derived class and multiple intermediate base classes.

MULTIPLE INHERITANCE

In multiple inheritance there exist multiple classes and single

derived class.

HYBRID AND HEIRARCHICAL

SUPER KEYWORD

 The super is java keyword. As the name

suggest super is used to access the members of

the super class. It is used for two purposes in

java.

 The first use of keyword super is to access the

hidden data variables of the super class hidden

by the sub class.

super.member;

class A

{

int a; int b; int c;

A(int p, int q, int r)

{

a=p; b=q; c=r;

}

}

class B extends A

{

int d;

B(int l, int m, int n, int o)

{

super(l,m,n); d=o;

}

void Show()

class A

{

int a;

float b;

void Show()

{

System.out.println("b in super class: " + b);

}

}

class B extends A

{

int a;

float b;

B(int p, float q)

{

a = p;

super.b = q;

}

void Show()

{

super.Show();

System.out.println("b in super class: " + super.b);

System.out.println("a in sub class: " + a);

}

}

class Mypgm

{

public static void main(String[] args)

{

B subobj = new B(1, 5); subobj.Show();

}

}

OUTPUT

b in super class: 5.0 b in super class: 5.0 a in sub class: 1

Use of super to call super class constructor:

The second use of the keyword super in java is to

call super class constructor in the subclass.

This functionality can be achieved just by using the

following command.

super(param-list);

EXAMPLE

class A

{

int a; int b; int c;

A(int p, int q, int r)

{

a=p; b=q; c=r;

}

}

class B extends A

{

int d;

B(int l, int m, int n, int o)

{

super(l,m,n); d=o;

}

void Show()

{

System.out.println("a = " + a); System.out.println("b = " + b);

System.out.println("c = " + c); System.out.println("d = " + d);

}

}

class Mypgm

{

public static void main(String args[])

{

B b = new B(4,3,8,7);

b.Show();

}

}

OUTPUT

a = 4

b = 3

c = 8

d = 7

MULTILEVEL HIERARCHY

 When a subclass is derived from a derived class then

this mechanism is known as the multilevel inheritance.

 The derived class is called the subclass or child class for

it's parent class and this parent class works as the child

class for it's just above (parent) class.

 Multilevel inheritance can go up to any number of level.

EXAMPLE

class A

{

int x; int y;

int get(int p, int q)

{

x=p; y=q;

return(0);

}

void Show()

{

System.out.println(x);

}

}

class B extends A

{

void Showb()

{

System.out.println("B");

}

}

class C extends B

{

void display()

{

System.out.println("C");

}

public static void main(String args[])

{

A a = new A(); a.get(5,6);

a.Show();

}

}

OUTPUT

5

WHEN CONSTRUCTORS ARE CALLED

 Constructors are called in order of derivation

,from super class to subclass ,

 Super() must be the first statement executed in a

subclass constructor.

 If super() is not used ,then the default

constructor of each super class will be executed.

EXAMPLE

Class A{

A()

{

System.out.println(“Inside A’s constructor”);

}

class B extends A{

B(){

System.out.println(“Inside B’s constructor”);

}

}

Class C extends B{

C() {

System.out,println(“Inside C’s constructor”);

}

}

Class CallingCons{

Public static void mai(String args[])

{

C c=new C();

}

}

Output;

Inside A’s constructor

Inside B’s constructor

Inside C’s constructor

METHOD OVRRIDING

 Method overriding in java means a subclass method

overriding a super class method.

 Superclass method should be non-static. Subclass uses

extends keyword to extend the super class

 In overriding methods of both subclass and superclass

possess same signatures.

EXAMPLE

class A

{

int i;

A(int a, int b)

{

i = a+b;

}

void add()

{

System.out.println("Sum of a and b is: " + i);

}

}

class B extends A

{

int j;

B(int a, int b, int c)

{

super(a, b); j = a+b+c;

}

void add()

{

super.add();

System.out.println("Sum of a, b and c is: " + j);

}

}

class MethodOverriding

{

public static void main(String args[])

{

B b = new B(10, 20, 30);

b.add();

}

}

OUTPUT

Sum of a and b is: 30 Sum of a, b and c is: 60

METHOD OVERLOADING

 Two or more methods have the same names but

different argument lists.

 The arguments may differ in type or number, or

both. However, the return types of overloaded

methods can be the same or different is called

method overloading.

EXAMPLE

class MethodOverloading

{

int add(int a,int b)

{

return(a+b);

}

float add(float a,float b)

{

return(a+b);

}

double add(int a, double b,double c)

{

return(a+b+c);

}

}

class MainClass

{

public static void main(String args[])

{

MethodOverloading mobj = new MethodOverloading ();

System.out.println(mobj.add(50,60));

System.out.println(mobj.add(3.5f,2.5f));

System.out.println(mobj.add(10,30.5,10.5));

}

}

OUTPUT

110

6.0

51.0

DYNAMIC METHOD DISPATCH

 Dynamic method dispatch is the mechanism by

which a call to an overridde method at run time

rather than compile time.

 It is important because this is how java

implements run –time polymorphism

Class A

{

Void callme() {

System.out.printnl(“Inside A’s callme method”);

}

}

Class B extends A{

//override callme()

Void callme() {

System.out.printl(“Inside B’s callme method”);

}

}

Class C extends A {

//override callme()

Void callme() {

System.out.println(“Inside C’s callme method”);

}

}

Class Dispatch {

Public static void main(String args[]) {

A a =new A();

B b=new B();

C c=new C();

A r;

r=a; //r refers to an A object

r.callme(); //calls A’s version of callme

r=b; //r refers to an B object

r.callme(); //calls B’s version of callme

r=c; //r refers to an C object

r.callme(); //calls C’s version of callme

OUTPUT:

Inside A’s callme method

Inside B’s callme method

Inside C’s callme method

ABSTRACT CLASSES

 abstract keyword is used to make a class

abstract.

 Abstract class can’t be instantiated with new

operator.

 We can use abstract keyword to create an

abstract method; an abstract method doesn’t

have body.

 If classes have abstract methods, then the

class also needs to be made abstract using

abstract keyword, else it will not compile.

 Abstract classes are used to provide common

method implementation to all the subclasses

or to provide default implementation.

abstract Class AreaPgm

{

double dim1,dim2; AreaPgm(double x,double y)

{

dim1=x; dim2=y;

}

abstract double area();

}

class rectangle extends AreaPgm

{

rectangle(double a,double b)

{

super(a,b);

}

double area()

{

System.out.println("Rectangle Area"); return dim1*dim2;

}

}

class triangle extends figure

{

triangle(double x,double y)

{

super(x,y);

}

double area()

{

System.out.println("Traingle Area"); return dim1*dim2/2;

}

}

class MyPgm

{

public static void main(String args[])

{

AreaPgm a=new AreaPgm(10,10); // error, AreaPgm is a abstract class.

rectangle r=new rectangle(10,5); System.out.println("Area="+r.area());

triangle t=new triangle(10,8); AreaPgm ar;

ar=obj; System.out.println("Area="+ar.area());

}

}

{

public static void main(String args[])

{

AreaPgm a=new AreaPgm(10,10); // error,
AreaPgm is a abstract class.

rectangle r=new rectangle(10,5);
System.out.println("Area="+r.area());

triangle t=new triangle(10,8); AreaPgm ar;

ar=obj; System.out.println("Area="+ar.area());

}

}

USING FINAL WITH INHERITANCE

The final keyword in java is used to restrict the

user. The final keyword can be used in many

context. Final can be:

 variable

 method

 class

EXAMPLE PROGRAM

class Bike

{

final int speedlimit=90;//final variable

void run()

{

speedlimit=400;

}

}

Class MyPgm

{

public static void main(String args[])

{

Bike obj=new Bike(); obj.run();

}

}

Output:

Compile Time Error

final method: If you make any method as final, you cannot
override it.

Example:

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

}

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda(); honda.run();

}

}

Output:Compile Time Error

final class:If you make any class as final, you cannot extend
it.

Example:

final class Bike

{

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 50kmph");

}

}

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda(); honda.run();

}

}

Output:Compile Time Error

THE OBJECT CLASS

Method

Object clone()

Boolean equals(Object object)

Void finalize()

Class getClass()

Int hashCode()

Void notify()

Void notifyAll()

String toString()

Void wait()

Void wait(long milliseconds)

Void wait(long milliseconds,

int nanoseconds)

Packages and Interfaces

o Packages

o Access Protection

o Importing Packages

o Interfaces

PACKAGES

 A java package is a group of similar types of

classes, interfaces and sub- packages.

 Package in java can be categorized in two

form,
 built-in package and

 user-defined package.

Advantage of Java Package

 Java package is used to categorize the classes

and interfaces so that they can be easily

maintained.

 Java package provides access protection.

 Java package removes naming collision.

//save as Simple.java package mypack; public class

Simple

{

public static void main(String args[])

{

System.out.println("Welcome to package");

}

}

Example of package that import the
packagename.*

//save by A.java package pack; public class A

{

public void msg(){System.out.println("Hello");}

}

//save by B.java package mypack; import pack.*;

class B

{

public static void main(String args[])

{

A obj = new A(); obj.msg();

}

}

Output:Hello

Example of package by import package.classname

//save by A.java

package pack;

public class A

{

public void msg(){System.out.println("Hello");

}

}

//save by B.java package mypack; import pack.A;

class B

{

public static void main(String args[])

{

A obj = new A(); obj.msg();

}

}

Output:Hello

Example of package by import fully qualified name

//save by A.java package pack; public class A

{

public void msg()

{

System.out.println("Hello");

}

}

//save by B.java package mypack; class B

{

public static void main(String args[])

{

pack.A obj = new pack.A();//using fully qualified name

obj.msg();

}

Output:Hello

ACCESS MODIFIERS/SPECIFIERS

The access modifiers in java specify accessibility

(scope) of a data member, method, constructor or

class.

There are 4 types of java access modifiers:

 private

 default

 protected

 public

Access
Modifier

within class within package Outside
Package by
subclass only

outside
package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

INTERFACES

 An interface in java is a blueprint of a class. It

has static final variables and abstract methods.

 It is used to achieve abstraction.

 It is used to achieve abstraction and multiple

inheritance in Java.

 Interface fields are public, static and final by

default, and methods are public and abstract.

UNDERSTANDING RELATIONSHIP BETWEEN

CLASSES AND INTERFACES

EXAMPLE 1

interface printable

{

void print();

}

class Pgm1 implements printable

{

public void print()

{

System.out.println("Hello");

}

}

class IntefacePgm1

{

public static void main(String args[])

{

Pgm1 obj = new Pgm1 (); obj.print();

}

}

Output:

Hello

MULTIPLE INHERITANCE IN JAVA BY

INTERFACE

EXAMPLE

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class Pgm2 implements Printable,Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()

{

System.out.println("Welcome");

}

}

Class InterfaceDemo

{

public static void main(String args[])

{

Pgm2 obj = new Pgm2 (); obj.print();

obj.show();

}

}

Output: Hello Welcome

EXAMPLE 2

interface Printable

{

void print();

}

interface Showable

{

void print();

}

class InterfacePgm1 implements Printable, Showable

{

public void print()

{

System.out.println("Hello");

}

}

class InterfaceDemo

{

public static void main(String args[])

{

InterfacePgm1 obj = new InterfacePgm1 ();

obj.print();

}

}

Output:

Hello

INTERFACE INHERITANCE

interface Printable

{

void print();

}

interface Showable extends Printable

{

void show();

}

class InterfacePgm2 implements Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()

{

System.out.println("Welcome");

}

Class InterfaceDemo2

{

public static void main(String args[])

{

InterfacePgm2 obj = new InterfacePgm2 ();

obj.print();

obj.show();

}

}


Output:

Hello Welcome

MULTITHREDED PROGRAMMING
By

Hamsashree M K

Assistant Professor

Dept. Of ECE

BGSIT,B G Nagara

MULTITHREADED PROGRAMMING

 The Java Thread Model

 The Main Method

 Creating a Thread

 Creating Multiple Thread

 Using isAlive() and join()

 Thread Priorities

 Synchronization

 Interthread Communication

 Suspending,Resuming and Stopping Threads

 Using Multithreading

MULTITHREADING

 Multithreading is a conceptual programming

paradigm where a program is divided into two or

more subprogram.

 Which can be implemented at the same time in

parallel.

 Multithreading is a specialized form of

multitasking.

 In a thread-based multitasking environment, the

thread is the smallest unit of dispatch able code.

This means that a single program can perform

two or more tasks simultaneously.

THREAD

 The small unit of program or sub module is called

as thread.

 Each thread defines a separate path of execution

 Main thread has the ability to create additional

threads.

LIFE CYCLE OF A THREAD

Thread can enter into different state during life of

thread, different stages in thread are as follows:

 New born

 Runnable

 Running

 Dead

 Blocked

CREATING A THREAD

Thread can be created in two ways:

 By creating a thread class(Extending Thread

class)

 By converting a class to a Thread

Class(Implementing Runnable interface)

BY CREATING A THREAD CLASS(EXTENDING

THREAD CLASS):

class class_name extends Thread

{

public void run()

{

/*Implement actual code*/

}

public static void main(String ar[])

{

class_name object=new class_name();

object.start();

}

}

EXAMPLE

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“A class=”+i);

}

}

class B extends A

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.start();

b1.start();

}

}

BY CONVERTING A CLASS TO A THREADABLE

CLASS(IMPLEMENTING RUNNABLE INTERFACE)

class Class_Name implements Runnable

{

public void run()

{

/* Implements operation */

}

public static void main(String ar[])

{

Class_Name object=new Class_Name();

Thread object1=new Thread(object);

object1.start();

}

}

EXAMPLE

class A implements Runnable

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“Class A=”+i);

}

}

class B implements Runnable

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

Thread t1=new Thread(a1);

Thread t2=new Thread(b1);

t1.start();

t2.start();

}

}

THREAD METHODS

 Yield()

 stop()

 suspend()

 resume()

 wait()

 notify()

 notifyall().

YIELD() METHOD

 Calling yield() will move the current thread from running to runnable, to give other
threads a chance to execute.

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) yield();

}

}

}

class B

{

public static void main(String ar[])

{

A a1=new A();

a1.start();

}

}

STOP() METHOD
When stop() is called then processor will kill thread permanently.It means thread move to dead

state.

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) stop();

}

}

}

class B

{

public static void main(String args[])

{

A a1=new A();

a1.start();

}

}

SLEEP() AND SUSPEND() METHOD

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) try { sleep(100);}

catch(Exception e){

s.o.p(e) resume();}

}

}

}

class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) suspend();

}

}

}

class Mainclass

{

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.start();

b1.start();

}

}

THREAD PRIORITIES

 Each thread assigned a priority, which effects the

order in which it is scheduled for running.

 Thread of same priority are given equal

treatment by the java scheduler and there for

they share the processor on FCFS basis

 Java permits us to set the priority of the thread

using setPriority()methods.

Final void setPriority(int level)

 Where level specify the new priority setting for
the calling thread. Level is the integer constant
as follows:

MAX_PRIORITY

MIN_PRIORITY

NORM_PRIORITY

 The MAX_priority value is 10,MIN_PRIORITY
values is 1 And NORM_PRIORITY is the default
priority whose value is 5.

 We can also obtain the current priority setting
value by calling getPriority() method of thread.

Final int getPriority()

EXAMPLE

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

s.o.p(“class a thread=”+i);

}

}

}

class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

s.o.p(“Class b thread=”+i);

}

}

class MainThread

{

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.setPriority(Thread.MAX_PRIORITY);

b1.setPriority(Thread.MIN_PRIORITY);

a1.start();

b1.start();

b1.setPriority(a1.getPriority()+10);

}

}

CREATING MULTIPLE THREAD

//Create multiple thread

Class NewThread implements Runnable{

String Name;

Thread t;

NewThread(String threaName){

name=threadName;

t=new Thread(this,name);

System.out.println(“New thread:” +t);

t.start();

}

//This is the entry point for thread

Public void run()

{

try{

for(int i=5;i>0;i++)

System.out.println(name + “:” +i);

Thread.sleep(100);

}

}

Catch(InterruptedException e){

System.out.println(name + “Interrupted”);

}

System.out.println(name + “existing.”);

}

}

class MultiThreadDemo{

public static void main(string args[]){

new NewThread(“One”); //start threads

new NewThread(“Two”);

new NewThread(“Three”);

try{

//wait other threads to end

Thread.sleep(10000);

}catch(InterruptedException e) {

System.out.println(“Main thread Interrupted”);

}

System.out.println(“Main thread exiting”);

}

}

OUTPUT

New thread:Thread [One, 5,main]

New thread:Thread [Two, 5,main]

New thread:Thread [Three, 5,main]

One:5

Two:5

Three:5

One:4

Two:4

Three:4

One:3

Two:3

Three:3

One:2

Two:2

Three:2

One:1

Two:1

Three:1

One Exiting

Two Exiting

Three Exiting.

Main thread exiting

ISALIVE() AND JOIN()

 The final isAlive() method returns true if the
thread is still running or the Thread has not
terminated.

final join()

 The final join() method waits until thread on
which it is called is terminated. For example,
thread1.join() suspends the current thread until
thread1 dies.

 The join() method can throw an
InterruptedException if the current thread is
interrupted by another thread.

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class A=”+i);

}

}

Class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

}

class C

{

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.start();

b1.start();

System.out.println(a1.isAlive());

System.out.println(b1.isAlive());

try

{

A1.join();

B1.join();

}

catch(Exception e)

{

System.out.println(e);

}

System.out.println(“main thread dead”);

}

}

SYNCHRONIZATION

 When two or more thread needs access to the

shared resource, they need some way to ensure

that the resource will be used by only one thread

at a time.

 The process by which this is achieved is called

synchronization.

 Key to synchronized is the concepts of monitor or

semaphores.

 A monitor is an object that is used as mutually
exclusive lock or mutex. Only one thread can own a
monitor at a given time. When one thread acquires a
lock it is said to have entered the monitor.

 All other thread attempting to enter the locked
monitor will be suspended until the first thread exits
the monitor. These other thread are said to be waiting
for monitor.

 This can be achieved by using keyword synchronized
to method.

Syntex:

synchronized void method_name()

{ /* implementation or operation

}

EXAMPLE PROGRAM

class A

{

Synchronized void display()

{

for(int i=0;i<10;i++)

System.out.pprintln(“i=”+i);

}

}

class B extends Thread

{

public void run()

{

A a1=new A();

System.out.println(“class A thread”);

For(int i=0;i<10;i++)

a1.display();

}

}

class C extends Thread

{

public void run()

{

A a1=new A();

Sysem.out.println(“class B thread”);

For(int i=0;i<10;i++)

a1.display();

}

}

class D

{

public static void main(String ar[])

{

B b1=new B();

C c1=new C();

b1.start();

c1.start();

}

}

INTER-THREAD COMMUNICATION

 Inter-thread communication can be defined as

exchange of message between two or more

threads. The transfer of message takes place

before or after changes of state of thread.

 The inter-thread communication can be achieved

with the help of three methods as follows:

Wait(),notify() notifyall()

 Wait()- tells the calling thread to give up the

monitor and go to sleep mode until some of other

thread enters the same monitor and call the

notify() methods

 Notify()-wakes up a thread that called wait()

method on the same object.

 Notifyall()-wakes up all thread that called

wait() methods on the same object.

PRODUCER CONSUMER/BOUNDED BUFFER

PROBLEM

 Producer thread goes on producing an item

unless an until buffer is full.

 Producer thread check before producing an item

weather buffer is full or not.

 Consumer thread goes on consuming an item

which is produced by the producer.

EXAMPLE

class A

{

int stack[]=new int[10];

int top=-1;

Synchronized void produce(int item)

{

if(top==10)

try

{

wait();

}

catch(Exception e)

{

System.out.println(e);

}

Stack[++top]=item;

notify();

}

Synchronized void consume()

{

if(top==-1)

try

{

wait();

}

catch(Exception e)

{

System.out.println(e);

}

item=Stacktop++];

System.out.println(“consumed item is”+item);

notify();

}

}

class Producer extends Thread

{

public void run()

{

A a1=new A();

for(int i=0;i<10;i++)

a1.produce(i);

}

}

class Consumer extends Thread

{

public void run()

{

A a1=new A();

for(int i=0;i<12;i++)

a1.consume();

}

}

class MainThread

{

public static void main(String args[])

{

Produce p=new Produce();

Consume c=new Consume();

p.start();

c.start();

}

}

READER-WRITER PROBLEM

 Reader thread reading an item from the buffer,

Where as writer thread writing an item to buffer.

 If reader is reading then writer has to wait

unless and until reading is finish.

 While writing thread writing an content then no

other thread read the content unless and until

writing is over.

